Name:

4.1 Quiz Review - Linear Inequalities

1) Graph and label the given inequality on a coordinate axes:

$$-2y > x + 4$$

- 2) Which of the following best describes the graph of y < mx + b?
 - A) a solid line through y = mx + b with the half-plane below the line shaded
 - B) a dashed line through y = mx + b with the half-plane above the line shaded
 - C) a dashed line through y = mx + b with the half-plane below the line shaded
 - D) a solid line through y = mx + b with the half-plane above the line shaded
- 3) Which of the following best describes the graph of y > mx + b?
 - A) a dashed line through y = mx + b with the half-plane below the line shaded
 - B) a solid line through y = mx + b with the half-plane below the line shaded
 - C) a dashed line through y = mx + b with the half-plane above the line shaded
 - D) a solid line through y = mx + b with the half-plane above the line shaded

What is the equation of the graphed region? 4)

A)
$$y \le -5$$

B)
$$y \le -\frac{5}{4}$$

C)
$$x \le 5$$

$$D) \quad x \le -\frac{5}{4}$$

5) Which of the following inequalities is equivalent to x + y > 3?

A)
$$y > x - 3$$

B)
$$y > -x + 3$$

C)
$$y < x - 3$$

D)
$$y < -x + 3$$

Which of the following inequalities is equivalent to 2y + x > 2? 6)

A)
$$y < -\frac{1}{2}x + 1$$

B)
$$y > -\frac{1}{2}x + 1$$

B)
$$y > -\frac{1}{2}x + 1$$
 C) $y < -\frac{1}{2}x - 1$

D)
$$y > \frac{1}{2}x + 1$$

Which of the following inequalities is equivalent to $5x + y \le 3$? 7)

A)
$$y \ge 5x + 3$$

B)
$$y \le 5x + 3$$

C)
$$y \le -5x + 3$$

D)
$$y \ge -5x + 3$$

8) Which of the following ordered pairs are solutions to the inequality $y \le 2x - 1$?

9) Which of the following ordered pairs are solutions to the inequality $2y + 3x \le 12$?

$$II.$$
 (2,1)

10)	Which of the following ordered pairs are solutions to the inequality $3x - 2y \le 6$?		
	I. (-3,3)II. (0,-1)III. (2,4)IV. (3,0)		
	A) /, //, and ///, only	C)	I and III, only
	B) / and ///, only	D)	// and /V, only
11)	Transform $x - y < 4$ into an equivalent inequality whose left member is y .		
12)	Transform $x + y \le 2$ into an equivalent inequality whose left member is y .		
13)	Transform $5 + 15x > -5y$ into an equivalent inequality	who	ose left member is <i>y</i> .
14)	Does the point (1,4) belong to the graph of $y \le 4$? [Ex	xpla	in why or why not.]
15)	Does the point (4,1) belong to the graph of $x < 3$? [Example 1]	kpla	in why or why not.]
16)	Does the point (1,2) belong to the graph of $x + y > 3$?) [E)	(plain why or why not.]
	•		

Questions 17 and 18 refer to the following:

Graph the given inequality and determine which points on the graph below are solutions to that inequality:

- 17) $y \ge -x + 1$
 - A) A, B, C, and D
 - B) A and B, only

- C) A, only
- D) C and D, only

- 18) $y \le \frac{1}{2}x 2$
 - A) A, only
- B) C and D
- C) D, only
- D) A and B

19) Graph and label the given inequality on a coordinate axes:

$$10 \leq 3x + 2y$$